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A calculation in C
In C = {a + bi | a, b ∈ R}, we have

3 + 2i

1− 2i
=

(3 + 2i)(1 + 2i)

(1− 2i)(1 + 2i)
=

3 + 8i + 4i2

1− 4i2
=
−1 + 8i

5
.

We can also deduce that

3− 2i

1 + 2i
=
−1− 8i

5

thanks to complex conjugation σ :
C −→ C
z 7−→ z

being a field

automorphism. But why?

The only thing about i that this calculation uses is i2 = −1.
So it will remain valid if we replace i with any number α such
that α2 = −1.
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A calculation in Q(
√

2)

In Q(
√

2) = {a + b
√

2 | a, b ∈ Q}, we have

3 +
√

2

1−
√

2
=

(3 +
√

2)(1 +
√

2)

(1−
√

2)(1 +
√

2)
=

3 + 4
√

2 +
√

2
2

1−
√

2
2 = −5−4

√
2.

The only thing about
√

2 that this calculation uses is√
2
2

= 2. So it will remain valid if we replace
√

2 with any
number α such that α2 = 2, e.g. α = −

√
2

 
3−
√

2

1 +
√

2
= −5 + 4

√
2.

In fact, we see that τ :
Q(
√

2) −→ Q(
√

2)

a + b
√

2 7−→ a − b
√

2
is a field

automorphism.
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A calculation in higher degree

Let P(x) = x5 + 2x2 + 3 ∈ Q[x ], whose complex roots are

−1.49 · · · , −0.18 · · · ± 1.02 · · · i , 0.93 · · · ± 0.98 · · · i .

Let α be the real root. What is
1

α4 + 2α− 2
in

Q(α) = {a + bα + cα2 + dα3 + eα4 | a, b, c , d , e ∈ Q} ?

Let Q(x) = x4 + 2x − 2 ∈ Q[x ]. The Bézout identity
U(x)P(x) + V (x)Q(x) = 1, where

U = −8x3+12x2−18x+11, V = 8x4−12x3+18x2−11x+16,

shows that
1

α4 + 2α− 2
=

1

Q(α)
= V (α) = 8α4−12α3+18α2−11α+16.

In fact, this holds for all 5 roots of P , not just for the real one!
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Upshot: automorphisms!

Numbers having the same minimal polynomial P(x) have the
same properties (anthying stemming from P(α) = 0).

 Algebraically, they are indistiguishable.

 We expect the existence of automorphisms which
exchanges them.
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Automorphisms detect membership of subfields

In the extension R ⊂ C, the elements of R are the elements

of C fixed by σ :
C −→ C
z 7−→ z

.

In the extension Q ⊆ Q(
√

2), the elements of Q are the

elements of Q(
√

2) fixed by τ :
Q(
√

2) −→ Q(
√

2)

a + b
√

2 7−→ a − b
√

2
.

 Can detect elements of the small field by the
automorphism.

More generally, if we had a big extension K ⊂ L with several
automorphisms, the fixed points of each automorphism would
give us subextensions K ⊆ E ⊆ L.
 Galois correspondence between fields and
groups (of automorphisms).
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Unsolvability by radicals

Field extensions constructed by taking radicals result in “easy”
automorphism groups.

In degree ≥ 5, automorphism groups are usually
“complicated”.

 Cannot express the roots by radicals.
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