MAU34101 Galois theory

Introduction: What is Galois theory about?

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2021–2022 Version: September 13, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

A calculation in $\ensuremath{\mathbb{C}}$

In
$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$
, we have
$$\frac{3 + 2i}{1 - 2i} = \frac{(3 + 2i)(1 + 2i)}{(1 - 2i)(1 + 2i)} = \frac{3 + 8i + 4i^2}{1 - 4i^2} = \frac{-1 + 8i}{5}.$$

A calculation in $\ensuremath{\mathbb{C}}$

In
$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$
, we have
$$\frac{3 + 2i}{1 - 2i} = \frac{(3 + 2i)(1 + 2i)}{(1 - 2i)(1 + 2i)} = \frac{3 + 8i + 4i^2}{1 - 4i^2} = \frac{-1 + 8i}{5}.$$

We can also deduce that

$$\frac{3-2i}{1+2i} = \frac{-1-8i}{5}$$

thanks to complex conjugation $\sigma: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \overline{z} \end{array}$ being a <u>field</u> automorphism. But why?

A calculation in $\ensuremath{\mathbb{C}}$

In
$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$
, we have
$$\frac{3+2i}{1-2i} = \frac{(3+2i)(1+2i)}{(1-2i)(1+2i)} = \frac{3+8i+4i^2}{1-4i^2} = \frac{-1+8i}{5}.$$

We can also deduce that

$$\frac{3-2i}{1+2i} = \frac{-1-8i}{5}$$

thanks to complex conjugation $\sigma: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \overline{z} \end{array}$ being a <u>field</u> automorphism. But why?

The only thing about *i* that this calculation uses is $i^2 = -1$. So it will remain valid if we replace *i* with any number α such that $\alpha^2 = -1$.

A calculation in $\mathbb{Q}(\sqrt{2})$

$$\ln \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}, \text{ we have}$$
$$\frac{3 + \sqrt{2}}{1 - \sqrt{2}} = \frac{(3 + \sqrt{2})(1 + \sqrt{2})}{(1 - \sqrt{2})(1 + \sqrt{2})} = \frac{3 + 4\sqrt{2} + \sqrt{2}^2}{1 - \sqrt{2}^2} = -5 - 4\sqrt{2}.$$

A calculation in $\mathbb{Q}(\sqrt{2})$

In
$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$
, we have
$$\frac{3 + \sqrt{2}}{1 - \sqrt{2}} = \frac{(3 + \sqrt{2})(1 + \sqrt{2})}{(1 - \sqrt{2})(1 + \sqrt{2})} = \frac{3 + 4\sqrt{2} + \sqrt{2}^2}{1 - \sqrt{2}^2} = -5 - 4\sqrt{2}.$$

The only thing about $\sqrt{2}$ that this calculation uses is $\sqrt{2}^2 = 2$. So it will remain valid if we replace $\sqrt{2}$ with any number α such that $\alpha^2 = 2$, e.g. $\alpha = -\sqrt{2}$

$$\rightsquigarrow \frac{3-\sqrt{2}}{1+\sqrt{2}} = -5 + 4\sqrt{2}.$$

A calculation in $\mathbb{Q}(\sqrt{2})$

In
$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$
, we have

$$\frac{3 + \sqrt{2}}{1 - \sqrt{2}} = \frac{(3 + \sqrt{2})(1 + \sqrt{2})}{(1 - \sqrt{2})(1 + \sqrt{2})} = \frac{3 + 4\sqrt{2} + \sqrt{2}^2}{1 - \sqrt{2}^2} = -5 - 4\sqrt{2}.$$

The only thing about $\sqrt{2}$ that this calculation uses is $\sqrt{2}^2 = 2$. So it will remain valid if we replace $\sqrt{2}$ with any number α such that $\alpha^2 = 2$, e.g. $\alpha = -\sqrt{2}$

$$\rightsquigarrow \frac{3-\sqrt{2}}{1+\sqrt{2}} = -5 + 4\sqrt{2}.$$

In fact, we see that
$$\tau : \begin{array}{cc} \mathbb{Q}(\sqrt{2}) & \longrightarrow & \mathbb{Q}(\sqrt{2}) \\ a+b\sqrt{2} & \longmapsto & a-b\sqrt{2} \end{array}$$
 is a field

automorphism.

A calculation in higher degree

Let
$$P(x) = x^5 + 2x^2 + 3 \in \mathbb{Q}[x]$$
, whose complex roots are
 $-1.49 \cdots$, $-0.18 \cdots \pm 1.02 \cdots i$, $0.93 \cdots \pm 0.98 \cdots i$.
Let α be the real root. What is $\frac{1}{\alpha^4 + 2\alpha - 2}$ in
 $\mathbb{Q}(\alpha) = \{a + b\alpha + c\alpha^2 + d\alpha^3 + e\alpha^4 \mid a, b, c, d, e \in \mathbb{Q}\}$?

A calculation in higher degree

Let $P(x) = x^5 + 2x^2 + 3 \in \mathbb{Q}[x]$, whose complex roots are

 $-1.49\cdots, -0.18\cdots \pm 1.02\cdots i, 0.93\cdots \pm 0.98\cdots i.$

Let
$$\alpha$$
 be the real root. What is $\frac{1}{\alpha^4 + 2\alpha - 2}$?

Let $Q(x) = x^4 + 2x - 2 \in \mathbb{Q}[x]$. The Bézout identity U(x)P(x) + V(x)Q(x) = 1, where

 $U = -8x^3 + 12x^2 - 18x + 11, \ V = 8x^4 - 12x^3 + 18x^2 - 11x + 16,$

shows that

$$\frac{1}{\alpha^4 + 2\alpha - 2} = \frac{1}{Q(\alpha)} = V(\alpha) = 8\alpha^4 - 12\alpha^3 + 18\alpha^2 - 11\alpha + 16.$$

A calculation in higher degree

Let $P(x) = x^5 + 2x^2 + 3 \in \mathbb{Q}[x]$, whose complex roots are

 $-1.49\cdots, -0.18\cdots \pm 1.02\cdots i, 0.93\cdots \pm 0.98\cdots i.$

Let
$$\alpha$$
 be the real root. What is $\frac{1}{\alpha^4 + 2\alpha - 2}$?

Let $Q(x) = x^4 + 2x - 2 \in \mathbb{Q}[x]$. The Bézout identity U(x)P(x) + V(x)Q(x) = 1, where

 $U = -8x^3 + 12x^2 - 18x + 11, \ V = 8x^4 - 12x^3 + 18x^2 - 11x + 16,$

shows that

$$\frac{1}{\alpha^4+2\alpha-2}=\frac{1}{Q(\alpha)}=V(\alpha)=8\alpha^4-12\alpha^3+18\alpha^2-11\alpha+16.$$

In fact, this holds for all 5 roots of P, not just for the real one!

Numbers having the same minimal polynomial P(x) have the same properties (anthying stemming from $P(\alpha) = 0$).

 \rightsquigarrow Algebraically, they are indistiguishable.

 \rightsquigarrow We expect the existence of $\underline{automorphisms}$ which exchanges them.

Automorphisms detect membership of subfields

In the extension $\mathbb{R} \subset \mathbb{C}$, the elements of \mathbb{R} are the elements of \mathbb{C} fixed by $\sigma : \begin{array}{c} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \overline{z} \end{array}$.

In the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$, the elements of \mathbb{Q} are the elements of $\mathbb{Q}(\sqrt{2})$ fixed by $\tau : \begin{array}{cc} \mathbb{Q}(\sqrt{2}) & \longrightarrow & \mathbb{Q}(\sqrt{2}) \\ a+b\sqrt{2} & \longmapsto & a-b\sqrt{2} \end{array}$.

Automorphisms detect membership of subfields

In the extension $\mathbb{R} \subset \mathbb{C}$, the elements of \mathbb{R} are the elements of \mathbb{C} fixed by $\sigma : \begin{array}{c} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \overline{z} \end{array}$.

In the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$, the elements of \mathbb{Q} are the elements of $\mathbb{Q}(\sqrt{2})$ fixed by $\tau : \begin{array}{cc} \mathbb{Q}(\sqrt{2}) & \longrightarrow & \mathbb{Q}(\sqrt{2}) \\ a+b\sqrt{2} & \longmapsto & a-b\sqrt{2} \end{array}$.

 \rightsquigarrow Can detect elements of the small field by the automorphism.

Automorphisms detect membership of subfields

In the extension $\mathbb{R} \subset \mathbb{C}$, the elements of \mathbb{R} are the elements of \mathbb{C} fixed by $\sigma : \begin{array}{c} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \overline{z} \end{array}$.

In the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$, the elements of \mathbb{Q} are the elements of $\mathbb{Q}(\sqrt{2})$ fixed by $\tau : \begin{array}{cc} \mathbb{Q}(\sqrt{2}) & \longrightarrow & \mathbb{Q}(\sqrt{2}) \\ a+b\sqrt{2} & \longmapsto & a-b\sqrt{2} \end{array}$.

 \rightsquigarrow Can detect elements of the small field by the automorphism.

More generally, if we had a big extension $K \subset L$ with several automorphisms, the fixed points of each automorphism would give us subextensions $K \subseteq E \subseteq L$. \rightsquigarrow **Galois correspondence** between fields and groups (of automorphisms). Field extensions constructed by taking radicals result in "easy" automorphism groups.

In degree \geq 5, automorphism groups are usually "complicated".

 \rightsquigarrow Cannot express the roots by radicals.