MAU34101 Galois theory

Introduction: What is Galois theory about?

Nicolas Mascot mascotn@tcd.ie
Module web page

Michaelmas 2021-2022
Version: September 13, 2021

Trinity College Dublin
Coláiste na Tríonóide, Baile Âtha Cliath
The University of Dublin

A calculation in \mathbb{C}

$$
\ln \mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\} \text {, we have }
$$

$$
\frac{3+2 i}{1-2 i}=\frac{(3+2 i)(1+2 i)}{(1-2 i)(1+2 i)}=\frac{3+8 i+4 i^{2}}{1-4 i^{2}}=\frac{-1+8 i}{5} .
$$

A calculation in \mathbb{C}

$\ln \mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$, we have

$$
\frac{3+2 i}{1-2 i}=\frac{(3+2 i)(1+2 i)}{(1-2 i)(1+2 i)}=\frac{3+8 i+4 i^{2}}{1-4 i^{2}}=\frac{-1+8 i}{5} .
$$

We can also deduce that

$$
\frac{3-2 i}{1+2 i}=\frac{-1-8 i}{5}
$$

thanks to complex conjugation $\sigma: \begin{array}{lll}\mathbb{C} & \longrightarrow \mathbb{C} \\ z & \longmapsto \bar{z}\end{array}$ being a field automorphism. But why?

A calculation in \mathbb{C}

$\ln \mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$, we have

$$
\frac{3+2 i}{1-2 i}=\frac{(3+2 i)(1+2 i)}{(1-2 i)(1+2 i)}=\frac{3+8 i+4 i^{2}}{1-4 i^{2}}=\frac{-1+8 i}{5} .
$$

We can also deduce that

$$
\frac{3-2 i}{1+2 i}=\frac{-1-8 i}{5}
$$

thanks to complex conjugation $\sigma: \begin{array}{lll}\mathbb{C} & \longrightarrow \mathbb{C} \\ z & \longmapsto & \bar{z}\end{array}$ being a field automorphism. But why?

The only thing about i that this calculation uses is $i^{2}=-1$. So it will remain valid if we replace i with any number α such that $\alpha^{2}=-1$.

A calculation in $\mathbb{Q}(\sqrt{2})$

$\ln \mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$, we have

$$
\frac{3+\sqrt{2}}{1-\sqrt{2}}=\frac{(3+\sqrt{2})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})}=\frac{3+4 \sqrt{2}+\sqrt{2}^{2}}{1-\sqrt{2}^{2}}=-5-4 \sqrt{2} .
$$

A calculation in $\mathbb{Q}(\sqrt{2})$

$\ln \mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$, we have

$$
\frac{3+\sqrt{2}}{1-\sqrt{2}}=\frac{(3+\sqrt{2})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})}=\frac{3+4 \sqrt{2}+\sqrt{2}^{2}}{1-\sqrt{2}^{2}}=-5-4 \sqrt{2} .
$$

The only thing about $\sqrt{2}$ that this calculation uses is
$\sqrt{2}^{2}=2$. So it will remain valid if we replace $\sqrt{2}$ with any number α such that $\alpha^{2}=2$, e.g. $\alpha=-\sqrt{2}$

$$
\rightsquigarrow \frac{3-\sqrt{2}}{1+\sqrt{2}}=-5+4 \sqrt{2} .
$$

A calculation in $\mathbb{Q}(\sqrt{2})$

$\ln \mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$, we have

$$
\frac{3+\sqrt{2}}{1-\sqrt{2}}=\frac{(3+\sqrt{2})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})}=\frac{3+4 \sqrt{2}+\sqrt{2}^{2}}{1-\sqrt{2}^{2}}=-5-4 \sqrt{2} .
$$

The only thing about $\sqrt{2}$ that this calculation uses is $\sqrt{2}^{2}=2$. So it will remain valid if we replace $\sqrt{2}$ with any number α such that $\alpha^{2}=2$, e.g. $\alpha=-\sqrt{2}$

$$
\rightsquigarrow \frac{3-\sqrt{2}}{1+\sqrt{2}}=-5+4 \sqrt{2} .
$$

In fact, we see that τ : $\begin{aligned} \mathbb{Q}(\sqrt{2}) & \longrightarrow \mathbb{Q}(\sqrt{2}) \\ a+b \sqrt{2} & \longmapsto a-b \sqrt{2}\end{aligned}$ is a field automorphism.

A calculation in higher degree

Let $P(x)=x^{5}+2 x^{2}+3 \in \mathbb{Q}[x]$, whose complex roots are

$$
-1.49 \cdots, \quad-0.18 \cdots \pm 1.02 \cdots i, \quad 0.93 \cdots \pm 0.98 \cdots i .
$$

Let α be the real root. What is $\frac{1}{\alpha^{4}+2 \alpha-2}$ in

$$
\mathbb{Q}(\alpha)=\left\{a+b \alpha+c \alpha^{2}+d \alpha^{3}+e \alpha^{4} \mid a, b, c, d, e \in \mathbb{Q}\right\} ?
$$

A calculation in higher degree

Let $P(x)=x^{5}+2 x^{2}+3 \in \mathbb{Q}[x]$, whose complex roots are

$$
-1.49 \cdots, \quad-0.18 \cdots \pm 1.02 \cdots i, \quad 0.93 \cdots \pm 0.98 \cdots i
$$

Let α be the real root. What is $\frac{1}{\alpha^{4}+2 \alpha-2}$?
Let $Q(x)=x^{4}+2 x-2 \in \mathbb{Q}[x]$. The Bézout identity $U(x) P(x)+V(x) Q(x)=1$, where
$U=-8 x^{3}+12 x^{2}-18 x+11, \quad V=8 x^{4}-12 x^{3}+18 x^{2}-11 x+16$,
shows that
$\frac{1}{\alpha^{4}+2 \alpha-2}=\frac{1}{Q(\alpha)}=V(\alpha)=8 \alpha^{4}-12 \alpha^{3}+18 \alpha^{2}-11 \alpha+16$.

A calculation in higher degree

Let $P(x)=x^{5}+2 x^{2}+3 \in \mathbb{Q}[x]$, whose complex roots are

$$
-1.49 \cdots, \quad-0.18 \cdots \pm 1.02 \cdots i, \quad 0.93 \cdots \pm 0.98 \cdots i
$$

Let α be the real root. What is $\frac{1}{\alpha^{4}+2 \alpha-2}$?
Let $Q(x)=x^{4}+2 x-2 \in \mathbb{Q}[x]$. The Bézout identity $U(x) P(x)+V(x) Q(x)=1$, where
$U=-8 x^{3}+12 x^{2}-18 x+11, \quad V=8 x^{4}-12 x^{3}+18 x^{2}-11 x+16$,
shows that
$\frac{1}{\alpha^{4}+2 \alpha-2}=\frac{1}{Q(\alpha)}=V(\alpha)=8 \alpha^{4}-12 \alpha^{3}+18 \alpha^{2}-11 \alpha+16$.

In fact, this holds for all 5 roots of P, not just for the real one!

Upshot: automorphisms!

Numbers having the same minimal polynomial $P(x)$ have the same properties (anthying stemming from $P(\alpha)=0$).
\rightsquigarrow Algebraically, they are indistiguishable.
\rightsquigarrow We expect the existence of automorphisms which exchanges them.

Automorphisms detect membership of subfields

In the extension $\mathbb{R} \subset \mathbb{C}$, the elements of \mathbb{R} are the elements of \mathbb{C} fixed by $\sigma: \begin{aligned} & \mathbb{C} \\ & z\end{aligned} \longmapsto \mathbb{C}$.

In the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$, the elements of \mathbb{Q} are the elements of $\mathbb{Q}(\sqrt{2})$ fixed by τ :

$$
\begin{aligned}
\mathbb{Q}(\sqrt{2}) & \longrightarrow \mathbb{Q}(\sqrt{2}) \\
a+b \sqrt{2} & \longmapsto a-b \sqrt{2} .
\end{aligned}
$$

Automorphisms detect membership of subfields

In the extension $\mathbb{R} \subset \mathbb{C}$, the elements of \mathbb{R} are the elements of \mathbb{C} fixed by $\sigma: \begin{aligned} & \mathbb{C} \\ & z\end{aligned} \longmapsto \mathbb{C}$.

In the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$, the elements of \mathbb{Q} are the elements of $\mathbb{Q}(\sqrt{2})$ fixed by τ :

$$
\mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{2})
$$

$$
a+b \sqrt{2} \longmapsto a-b \sqrt{2}
$$

\rightsquigarrow Can detect elements of the small field by the automorphism.

Automorphisms detect membership of subfields

In the extension $\mathbb{R} \subset \mathbb{C}$, the elements of \mathbb{R} are the elements of \mathbb{C} fixed by $\sigma: \begin{aligned} \mathbb{C} & \longrightarrow \mathbb{C} \\ z & \longmapsto \bar{z}\end{aligned}$.

In the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$, the elements of \mathbb{Q} are the elements of $\mathbb{Q}(\sqrt{2})$ fixed by τ :

$$
\mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{2})
$$

$$
a+b \sqrt{2} \longmapsto a-b \sqrt{2}
$$

\rightsquigarrow Can detect elements of the small field by the automorphism.

More generally, if we had a big extension $K \subset L$ with several automorphisms, the fixed points of each automorphism would give us subextensions $K \subseteq E \subseteq L$.
\rightsquigarrow Galois correspondence between fields and groups (of automorphisms).

Unsolvability by radicals

Field extensions constructed by taking radicals result in "easy" automorphism groups.

In degree ≥ 5, automorphism groups are usually "complicated".
\rightsquigarrow Cannot express the roots by radicals.

